

Building resilient urban coastal environments & communities through science based eco-engineering

Shimrit Perkol-Finkel – Session Moderator Intro

- 1) Shimrit Perkol-Finkel, ECOncrete Bringing Concrete to Life
- 2) Mart Black, TPCG Promoting Resiliency through Science-Based Eco-Engineering
- 3) Tyler Ortego, ORA Technologies Let The Oysters Do The Work
- 4) Leslie Suazo, Ducks Unlimited Powerful Partnerships Promote Community Resilience
- Time permitting Q&A

P WROLL WRAN

onment
Climate change Wildlife Energy Pollution

1ate nge

Climate change made Louisiana's catastrophic floods much more likely

Human-derived rising temperatures increased the risk of the natural disaster by at least 40%, a National Oceanic and Atmospheric Administration study found

r Milman iemilman ep 2016 18.10 BST

HURRICANES - TYPHOONS · just in

Storm drifts away from Hawaii 'almost biblical' rains

Coastal Development → Severe Stress on Natural Ecosystems

Habitat Loss

Low Biodiversity

Invasive Species

Ecosystem Restoration - Engineering Change

http://oppla.eu/green-infrastructureconference-nature-based-solutionssustainable-and-resilient-cities

http://www.nature.org/ourinitiatives/regions/northam erica/unitedstates/newyork/ucr-infographic.pdf

 $\label{eq:http://www.ecoshape.nl/files/paginas/ECOSHAPE_Bw} N_WEB.pdf$

http://nebula.rowan.edu/

http://www.t-book.unina.it/

Building resilient urban coastal environments & communities through science based eco-engineering

Building connections from the local to the landscape scale

Bringing Concrete to Life

Harnessing biological processes for building resilient coastal infrastructure

Shimrit Finkel, PhD Shimrit@econcretetech.com

Climate Change

A Concrete Problem

Destruction of Natural Coastal Habitats

Ecosystem Restoration - Engineering Change

Design solutions

Seattle Waterfront 2015- in progress

http://waterfrontseattle.org/

- Light penetration
- Vertical Habitats
- Sloping Habitats

Design solutions

THESEUS - coastal risk assessment and mitigation funded by the EU Commission

http://www.theseusproject.eu

Oncrete Bringing Concrete to Life

Macro Design

- ✓ Rich and Diverse Marine Life
- ✓ Enhanced Ecosystem Services
- ✓ Improved Structural Performance

- ✓ Low Carbon Solution
- \checkmark Cost Effective
- ✓ Aesthetic

Changing Paradigms: Biofouling → Bioprotection

The icing on the cake: Bioprotection of concrete structures by fuccoids and barnacles

Dr. Larissa Naylor & Dr. Martin Coombes Universities of Glasgow and Oxford With Prof. Heather Viles and Prof. Richard Thompson

http://urbaneproject.org/assets/pdf/(7)%20Larissa%20Naylor_BIOPROTECTION.pdf

Changing Paradigms: Biofouling \rightarrow Bioprotection

Structural Advantages:

- Strength and durability
- Reduced chloride penetration
- Absorption of wave energy
- Microclimate buffering
- Reduce maintenance

Biological & Ecological Advantages:

- Biological niches
- Ecosystem services
- Carbon Sink
- Water quality (filter feeders)
- Reduce ratio NIS/native species
- Esthetics

Two years of Field and Lab Experiments:

Lab settlement experiments:

- Significant differences between concrete matrices
- Portland based concrete lower results than other matrices in all experiments

Red

Red

Med

Matrix	Avg #
M1	2.73
M2	1.00
M3	1.00
M4	1.33
M5	0.00
Portland	0.00

Lab settlement experiments

■ Inorganic matter: significant differences □ Concrete composition: Portland < Other Matrices

□ Months post deployment: 3 <6 < 12 M □ Marine Environments: Temperate > Tropical

Maximal values: Temperate 1 kg/m² Tropical 0.5 kg/m²

Tel Aviv Metropolitan Area: > 3.6 M people

Herzliya Marina: One of the biggest & most innovative marinas in East Mediterranean
 Blue Flag Marina
 Hosts the World Harbor Project Green Engineering experiment
 In the process of transforming its infrastructure to Bio-enhanced

1) Armoring Units

Concrete Ecological Solutions

2) Anchorage Systems

4) Tide-pools

Experimental Array

- Treatment panels (150x90x13cm, 300Kg) placed vertically intertidal to sub-littoral
- Control plots composed of existing concrete seawall, same depths zones (scraped after baseline)

Intertidal 4 Treatment + 4 Control

Sub-littoral 4 Treatment + 4 Control

The Herzliya Municipal Touris Development Corporation Ltd.

Results

Baseline Survey – Existing Marina Concrete Seawall

- 8 taxa
- 100% cover turf algae
- Thick layer of dead barnacles
- Few small patches of *Mycale erythraeana* sponge
- Some live oysters (sub-littoral)

velopment Corporation Ltd.

Results

- Following 2 years of monitoring, ECOncrete seawall panels supported 23 different taxa compared to only 12 taxa identified on the marina seawall
- Frequent appearance of motile species (fish, crabs, shrimps) on enhanced panels

world harbour project

Building resilient urban ports and harbours through globally integrated research and management

WHP Partners

Original partners	New since 2015	New since 2016
Abu Dhabi, UAE	Coquimbo, Chile	Boston, USA
Auckland, New Zealand	Darwin, Australia	Penang, Malaysia
Bremerhaven, Germany	Dublin, Ireland	
Chesapeake Bay, USA	Galway Bay, Ireland	
Heraklion, Greece	Hobart, Australia	
Hong Kong, China	Plymouth, UK	
Jakarta, Singapore	Port Elizabeth, South Africa	
New York, USA	San Francisco, USA	
Qingdao, China	Santander, Spain	
Ravenna, Italy	Shanghai, China	
Rio de Janeiro, Brazil	Taipei, Taiwan	
St Georges, Grenada	Tel Aviv, Israel	
Sydney, Australia	Xiamen, China	
Vigo, Spain		

Credit: Steinberg et al - World Harbour Project

The efficacy of eco-engineered interventions for enhancing the native biodiversity of seawalls in harbours across the globe

World Harbour Project Supporters

Credit: Strain, Steinberg and Bishop - Green Engineering Group - World Harbour Project

Comparison of benthic recruitment on different substrates Data collection included full biological survey and biomass measurements

7 typologies x 5 reps at 1.5 meter depth

- ECOncrete Flat
- ECOncrete Complex
- RDL Flat
- RDL 2.5cm
- RDL 5cm
- Portland Concrete Flat
- Cleared Marina Seawall (existing Portland Concrete)

Tiles on the day of deployment, and existing seawall scraped as baseline control

Tiles covered with marine growth 12 month post deployment

Species richness was significantly higher on complex ECOncrete tiles compared to all other tiles as of the 9 months sampling (P<0.05)

Species diversity was significantly higher on complex ECOncrete tiles compared to all other tiles as of 6 months sampling (P<0.05)

Inorganic biomass on complex ECOncrete tiles was significantly higher than all other substrates sampled (Permanova P<0.05)

ECO Flat X 2 RDL Flat/Portland/ Seawall (P<0.05)

ECO Comp* X 4 ECO Flat X 11 Marina Seawall (P<0.05)

* Surface area of ECO Comp tile $(0.0910m^2)$ is X 1.5 compared to Flat tiles $(0.0625m^2)$, yet recruited X 4 inorganic biomass than ECO Flat and more than x 8 than Flat/Portland/ Seawall

Enhanced Biogenic Buildup → Carbon Sink

ECOncrete[®] - Up to 86% Reduced Carbon Footprint

- I. Combination of proprietary admix integrating by-products and recycled materials
- II. Unique ability to enhance biological processes:
 - Biocalcification
 - Photosynthesis

In temperate environments, ECOncrete gained an average of 2.5 Kg/m²/y of inorganic matter from biogenic buildup by calcifying species storing up to 0.3 Kg/m²/y CO₂

← Prev Next →

Photo 1 of 1

Since June 2013, ten interdisciplinary design teams have been working with a diverse range of stakeholders throughout the Sandy-affected region to develop innovative solutions to rebuild. On June 2nd, Secretary Shaun Donovan of HUD announced the winning proposals. Read More about the final designs.

Resist, Delay, Store, Discharge: A Comprehensive Strategy for Hoboken

OMA Hoboken, New Jersey

HURRICANE SANDY REBUILDING STRATEGY

LIVING BREAKWATERS & TOTTENVILLE SHORELINE PROTECTION PROJECT

LIVING BREAKWATERS & TOTTENVILLE SHORELINE PROTECTION

SCAPE TEAM

LIVING BREAKWATERS DESIGN PRELIMINARY 60% DESIGN

LIVING BREAKWATERS & TOTTENVILLE SHORELINE PROTECTION

BREAWATER MATERIALS

LIVING BREAKWATERS & TOTTENVILLE SHORELINE PROTECTION

LIVING BREAKWATERS & TOTTENVILLE **BIO-ENHANCED CONCRETE UNITS** SHORELINE PROTECTION NAVIGATION AID ARMOR STONE: D50+ 40" REEF RIDGE ROTATION AXIS GEOTEXTILE CORE STONE: 050= 4" REEF RIDGES REEF STREETS TILLER B **BIO-ENHANCED** CONCRETE UNIT INTERNAL REEF RIDGE RIP RAP STONE #2: 050= 36", 24", 15" INTERNAL REEF RIDGE RIP RAP. STONE #1: 050-40" TOE ARMOR STONE: D50-48* MARINE MATTRESS: D50-12*

BIO ENHANCING CONCRETE TOE ARMOR UNIT Dimension: 48"x 48"x 48" BIO ENHANCING CONCRETE TIDE POOLS Dimension: 44"X 48"X27

CORE / LEESIDE

- Higher likelihood of fine grain sediment build up
- Habitat for Hard Clams and Flounder

- CORE / WAVESIDE
- Habitat for predatory fish and other larger animals
- Likely to have low amounts of sedimentation

REEF FINGER / STREET

- · High diversity of niche ranges & varied habitat
- · Habitat for juvenile fish and crustaceans
- Sediment halo provides enhancement to soft-bottom
- · Increased water circulation through streets

Eelgrass habitat creation

LIVING BREAKWATERS & TOTTENVILLE SHORELINE PROTECTION

- Eco-Design reduced mitigation penalty by over 50%
- All Breakwater regions below MHHW = Habitat Creation

Blue is the new Green

Need for established incentives/regulations

While "green" building standards such as the LEED system are applied globally, "blue" standards for coastal infrastructure are only now spurring (Envision[™], WEDG) calling for further R&D of innovative environmentally sensitive technologies

equility and

and the second second

Use a science ord, evaluati

Waterfront Edge Design Guidelines (WEDG)

www.waterfrontalliance.org/WEDG

Blue is the new Green

Blue is the new Green

Invasive & Nuisance Species

Sensitivity to Wave/Temp/Chlorides

ECOSYSTEM GOODS & SERVICES Biodiversity, Nursing grounds, Food & Shelter, Water Quality

BIOPROTECTION Resistance to Wave/Temp/Chlorides

OUTGREENING VALUES Reduced Carbon Footprint, Permitting, Bidding

Conclusions & Recommendations

- Bringing life to coastal and marine infrastructure is a feasible, scalable and effective means for reducing the ecological footprint of coastal infrastructure even in a heavily urbanized settings
- Sustainable project Importance of multi-disciplinary collaborations
- Harnessing biological processes can increase both ecological and structural performance
- Benefits of biogenic buildup and bioprotection (longer life span, reduced maintenance)
- Importance of integrating ecological considerations into planning, design, and implementation of future hard coastal infrastructure and management schemes in light of global climate change and population growth

Building connections from the local to the landscape scale

Shimrit@econcretetech.com

